品質(zhì)因數(shù)
一個(gè)可以用來(lái)評(píng)估數(shù)字化無(wú)線電整體性能的通用技術(shù)是誤碼率(BER)的測(cè)試。這個(gè)測(cè)試通過(guò)用錯(cuò)碼位數(shù)與所傳輸?shù)目偽粩?shù)之比來(lái)測(cè)量信號(hào)傳輸和接收的質(zhì)量。然而,這是一個(gè)局限性很大的測(cè)試,因?yàn)樗](méi)有提供錯(cuò)碼的來(lái)源信息。
然而,如果采用圖7 所示的類似的方案來(lái)對(duì)SDR系統(tǒng)進(jìn)行測(cè)試,處于不同域中的信號(hào)可同時(shí)由不同的儀器獲取。這便使得測(cè)試工程師們可以在整個(gè)信號(hào)鏈中準(zhǔn)確地找出缺陷的可能來(lái)源。
關(guān)于這一點(diǎn),第二個(gè)通用的品質(zhì)因數(shù)是EVM,它可以洞察發(fā)射機(jī)和接收機(jī)可能存在的問(wèn)題[40],[42],這是因?yàn)槲覀儗?duì)幅值和相位誤差對(duì)每一個(gè)數(shù)字發(fā)射符號(hào)的影響都進(jìn)行了測(cè)量。EVM實(shí)質(zhì)上是測(cè)試整體的信號(hào)與噪聲之比以及信號(hào)的失真比,從而量化了由于非線性失真以及系統(tǒng)噪聲所引起的信號(hào)減損。與其它品質(zhì)因數(shù)不同,EVM 是通過(guò)實(shí)際傳輸?shù)姆?hào)來(lái)評(píng)估所存在的問(wèn)題對(duì)信號(hào)質(zhì)量的影響。
一個(gè)常用于發(fā)射機(jī)測(cè)試的指標(biāo)對(duì)頻譜在相鄰信道的再生進(jìn)行了量化。鄰道功率比[ACPR,有時(shí)又稱為鄰道電平比(ACLR)]是采用(out of band masks)來(lái)進(jìn)行說(shuō)明的,而帶外規(guī)范則定義了在相鄰信道所允許的最大傳輸功率。ACPR 通常起因于非線性失真所引起的頻譜再生。
ACPR 同樣可以用于備用信道(與帶通信號(hào)相鄰信道所鄰接的信道)。ACPR 為評(píng)估整個(gè)無(wú)線電網(wǎng)絡(luò)的性能提供了一個(gè)功能測(cè)試,這是因?yàn)樗梢栽试S工程師來(lái)對(duì)無(wú)線電系統(tǒng)的非線性對(duì)其它相近信道的干擾進(jìn)行評(píng)估。
正如對(duì)許多無(wú)線電結(jié)構(gòu)的測(cè)試一樣,對(duì)于SDR 的測(cè)試來(lái)說(shuō),測(cè)試中使用的激勵(lì)信號(hào)會(huì)影響無(wú)線電系統(tǒng)的測(cè)量性能。測(cè)試信號(hào)對(duì)無(wú)線電性能的影響通常是通過(guò)激勵(lì)固有的統(tǒng)計(jì)特性來(lái)進(jìn)行分析的,這個(gè)統(tǒng)計(jì)特性可以是采用概率密度(PDF ) 或者是互補(bǔ)累計(jì)分布函數(shù)(CCDF)。信號(hào)的PAPR 值(峰/均功率比)也經(jīng)常被用作一個(gè)品質(zhì)因數(shù)[44]-[48]。
在“無(wú)線系統(tǒng)測(cè)試指標(biāo)”一節(jié)中對(duì)這些均適用于傳統(tǒng)無(wú)線電和SDR 系統(tǒng)的品質(zhì)因數(shù)進(jìn)行了更詳細(xì)的討論。在下一個(gè)例子中, 我們要說(shuō)明必須采用混合域方法來(lái)測(cè)試SDR 系統(tǒng)中的這些品質(zhì)因數(shù)。
無(wú)線系統(tǒng)測(cè)試的指標(biāo)參數(shù)
這里,我們將要對(duì)在本文中所用到的品質(zhì)因數(shù)進(jìn)行一個(gè)簡(jiǎn)單的描述。
概率密度函數(shù)
在 概率論中, 概率密度函數(shù)(probability density function-PDF)是表示一個(gè)隨機(jī)變量X 的值小于x的概率的函數(shù)。通常,PDF 是在經(jīng)過(guò)了大量測(cè)量的基礎(chǔ)上確定的,它決定了x 所有可能取值的可能性,這是一個(gè)具有單位面積的非負(fù)函數(shù)
(S1)
其中a 和b 代表的是要確定的X 的概率區(qū)間。
互補(bǔ)累計(jì)分布函數(shù)
互補(bǔ)累計(jì)分布函數(shù)(complementary cumulative distribution function- CCDF)曲線是與PDF 密切相關(guān)的, 因?yàn)椋?它是通過(guò)CCDF=1-PDF 得到的。CDF 是可以直接從PDF 統(tǒng)計(jì)中得到的累計(jì)分布函數(shù)
(S2)
一條CCDF 曲線展示出一個(gè)信號(hào)處于高于某個(gè)功率水平以上的時(shí)間。它通常是由超出平均功率以上的功率的分貝值來(lái)表示的。
峰均功率比
峰均功率比(peak to average power ration-PAPR)是給定信號(hào)的最大峰值功率與平均功率之比,是無(wú)線通信中最令人感興趣的測(cè)量指標(biāo)。對(duì)于PAPR 對(duì)通信系統(tǒng)影響的評(píng)估主要是通過(guò)對(duì)CCDF 曲線的分析得到的,我們可以在CCDF 曲線中定義一個(gè)特定的百分比來(lái)獲得PAPR 的值
(S3)
其中NT 是總采樣數(shù)(時(shí)間間隔),它被用來(lái)確定PAPR 的值。
鄰道功率比
鄰道功率比 (adjacent channel power ratio- ACPR ) 是測(cè)量一個(gè)無(wú)線系統(tǒng)在相鄰信道所產(chǎn)生的相對(duì)于主信道的失真量。它通常被定義為相鄰頻率信道(偏置信道)的平均功率與發(fā)射頻率信道的平均功率之比
(S4)
其中F1 和F2 代表頻譜區(qū)間,S(W)是基頻信號(hào),U1 和U2是上鄰信道的頻譜區(qū)間。
正如在無(wú)線標(biāo)準(zhǔn)中所定義的,有兩種測(cè)量ACPR 的方法,一種是考慮整個(gè)基頻信號(hào)和整個(gè)相鄰信道的比值。第二種方法(由于比較容易測(cè)量因而使用更為廣泛)是找到在整個(gè)主頻段或在載波中心頻率附近較小的帶寬內(nèi)的功率與同樣較小帶寬的相鄰的信道內(nèi)功率的比值。
誤碼率
誤碼率(bit error ratio -BER)是所接收到的信息中錯(cuò)誤的位數(shù)與所傳輸?shù)目偟臄?shù)據(jù)位數(shù)的比值。BER 通常是用百分比來(lái)表示的,其中0%代表在接收機(jī)未檢測(cè)到錯(cuò)誤的比特
(S5)
這個(gè)測(cè)量可以在數(shù)字域中由測(cè)試工程師所實(shí)施的軟件函數(shù)來(lái)進(jìn)行,但還需要使用眾所周知的BER 測(cè)試器,測(cè)試器向發(fā)射機(jī)輸入一個(gè)已知的數(shù)據(jù)串,并且將它與來(lái)自接收機(jī)輸出端的數(shù)據(jù)進(jìn)行比較。
誤差向量幅值
誤差向量幅值(error vector magnitude-EVM)是用來(lái)測(cè)試調(diào)制與解調(diào)準(zhǔn)確度,以及信道受損程度的參數(shù)。它可以用來(lái)量化數(shù)字無(wú)線電發(fā)射機(jī)或接收機(jī)的性能。由發(fā)射機(jī)發(fā)射的信號(hào)或由接收機(jī)接收到的信號(hào)在硬件和軟件的實(shí)施過(guò)程中都會(huì)受到所有不同缺陷的影響,會(huì)使得K 調(diào)制信號(hào)星座點(diǎn)Zc(k)偏離它們的理想位置,S(k)。 在日常使用中,EVM 是測(cè)量這些點(diǎn)偏離它們的理想位置究竟有多遠(yuǎn),其中,對(duì)于N 個(gè)傳輸符號(hào),我們可以得到
(S6)
測(cè)試實(shí)例
為了說(shuō)明SDR 接收機(jī)的測(cè)試,我們使用文獻(xiàn)[39]所介紹的混合域測(cè)量裝置(類似于圖7 所示的結(jié)構(gòu)),如圖8所示。 一個(gè)用來(lái)模擬所發(fā)射的數(shù)字調(diào)制射頻信號(hào)的任意波形發(fā)生器和一臺(tái)接收機(jī)是用方框圖中的元件來(lái)仿真的。

圖8、按照文獻(xiàn)[39]中的建議,在實(shí)驗(yàn)中采用儀器所實(shí)施的SDR 前置端的測(cè)試構(gòu)建。被測(cè)器件(DUT)是由任意一個(gè)波形發(fā)生器來(lái)激勵(lì)的,示波器被用來(lái)對(duì)被測(cè)器件的模擬輸入信號(hào)進(jìn)行采樣。 一個(gè)邏輯分析儀被用來(lái)在被測(cè)器件的數(shù)字輸出端進(jìn)行采樣。采用參考信號(hào)和觸發(fā)信號(hào)來(lái)實(shí)現(xiàn)輸入和輸出測(cè)量的同步。這些設(shè)備是由使用通用接口總線(GPIB)連接的計(jì)算機(jī)來(lái)控制的。
這個(gè)被測(cè)器件是用帶寬為3MHz,采用64QAM(3/4)調(diào)制的處于頻分雙工模式的單用戶WiMAX 信號(hào)來(lái)激勵(lì)的[49]。
圖9 是采用邏輯分析儀在SDR 接收機(jī)的輸出端口所測(cè)得的結(jié)果。這個(gè)圖顯示出在激勵(lì)頻段上進(jìn)行了平均的總功率以及由于非線性失真而在上鄰信道中所產(chǎn)生的功率。這個(gè)圖展示了混合模式對(duì)SDR 進(jìn)行測(cè)試的本質(zhì):模擬輸出的品質(zhì)因數(shù)ACPR 已經(jīng)通過(guò)數(shù)字輸出信號(hào)和模擬輸入信號(hào)而得到了重建。

圖9、在WiMAX 信號(hào)激勵(lì)下,SDR 前置端輸出端口的測(cè)量結(jié)果。
在給定的輸入功率下,我們也已經(jīng)用EVM 對(duì)被測(cè)器件的性能進(jìn)行了評(píng)估。我們根據(jù)增益和相位延遲對(duì)所接收到的數(shù)字化的WiMAX 信號(hào)進(jìn)行解調(diào)和糾錯(cuò),從而得到了如圖10 所示的星座圖。在這個(gè)特定的測(cè)試中,所得到的EVM 大約是5.05%。

圖10、對(duì)采用64-QAM 調(diào)制的WiMAX 信號(hào)的輸入和輸出結(jié)果進(jìn)行比較的星座圖。
正是由于我們使用了一個(gè)可以同時(shí)對(duì)模擬波形和數(shù)字波行表征的混合模式的儀器,這才有可能得到SDR 元件的特性。
總結(jié)和結(jié)論
在這篇文章中,我們對(duì)可用于SDR 前置端的接收機(jī)和發(fā)射機(jī)進(jìn)行了一個(gè)綜述。我們討論了各自的優(yōu)點(diǎn)與缺點(diǎn)。正如我們所看到的,一個(gè)多頻段多模式接收機(jī)良好的設(shè)計(jì)結(jié)構(gòu)應(yīng)當(dāng)可以最佳地分享現(xiàn)有的硬件資源,并且使用可調(diào)諧和可以進(jìn)行軟件編程的器件。并不是每一個(gè)接收機(jī)結(jié)構(gòu)都具有這種特性的。從這個(gè)意義上講,按照我們的觀點(diǎn),當(dāng)SDR 接收機(jī)前置端更加成熟的時(shí)候,它將會(huì)是基于零/低中頻結(jié)構(gòu)或帶通采樣設(shè)計(jì)基礎(chǔ)之上的。
對(duì)于發(fā)射機(jī)來(lái)說(shuō),EER 技術(shù)和其修正版本是SDR應(yīng)用中很有前途的選擇,因?yàn)樗鼈兊男屎艽蟪潭壬吓cPAPR 無(wú)關(guān)。因此,它們可以很容易地應(yīng)用到多標(biāo)準(zhǔn)和多頻段操作中[50]。這種SDR 和CR 發(fā)射機(jī)結(jié)構(gòu)不僅需要高效放大器,而且還需要寬帶放大器[51]。SDR 領(lǐng)域在信號(hào)傳輸方面正在從模擬向數(shù)字方向轉(zhuǎn)移,因此,對(duì)提高射頻放大器開(kāi)關(guān)速度的要求變得更為明顯,更加嚴(yán)格,從而在未來(lái)將會(huì)引領(lǐng)到S 類發(fā)射機(jī)。
關(guān)于表征SDR 系統(tǒng)所采用的測(cè)試設(shè)備,我們說(shuō)明了為什么混合域設(shè)備對(duì)于SDR 的表征是非常必要的。我們還描述了為什么還要進(jìn)行一些改進(jìn)來(lái)開(kāi)發(fā)可以快速地,自動(dòng)地表征前置端并進(jìn)行失配校正的同步儀器。這樣的設(shè)備應(yīng)當(dāng)可以很理想地提供一些信息,如不同調(diào)制類型的EVM 和不同技術(shù)的鄰道功率比,并且能夠?qū)Χ鄻?biāo)準(zhǔn)多頻段無(wú)線電結(jié)構(gòu)進(jìn)行測(cè)試。隨著SDR 技術(shù)的日臻成熟,我們期待著會(huì)在市面上看到這些類型的儀器。
參考文獻(xiàn)
[1] J. Mitola, “The software radio architecture,” IEEE Commun. Mag., vol. 33, no. 5, pp. 26–38, May 1995.
[2] J. Mitola and G. Q. Maguire, “Cognitive radio: Making software radios more personal,” IEEE Pers. Commun., vol. 6, no. 4, pp. 13–18,Aug. 1999.
[3] P. Cruz, and N. B. Carvalho, “PAPR evaluation in multi-mode SDRtransceivers,” in Proc. 38th European Microwave Conf., Amsterdam, Oct. 2008, pp. 1354–1357.
[4] V. Giannini, J. Craninckx, and A. Baschirotto, Baseband Analog Circuits for Software Defined Radio. Netherlands: Springer-Verlag, 2008.
[5] M. Puvaneswari and O. Sidek, “Wideband analog front-end for multi-standard software defined radio receiver,” in Proc. IEEE Int. Symp. Personal, Indoor and Mobile Radio Communications, PIMRC, Sept. 2004, vol. 3, pp. 1937–1941.
[6] D. Lockie and D. Peck, “High-data-rate millimeter-wave radios,” IEEE Microwave Mag., vol. 10, no. 5, pp. 75–83, Aug. 2009.
[7] D. Brandon, D. Crook, and K. Gentile, “The advantages of using a quadrature digital upconverter in point-to-point microwave transmit systems,” Analog Devices, Inc., Norwood, MA, App. Note AN-0996, 2009.
[8] A. A. Abidi, “The path to the software-defined radio receiver,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 954–966, May 2007.
[9] V. Giannini, P. Nuzzo, C. Soens, K. Vengattaramane, M. Steyaert, J. Ryckaert, M. Goffioul, B. Debaillie, J. Van Driessche, J. Craninckx, and M. Ingels, “A 2 mm2 0.1-to-5 GHz SDR receiver in 45 nm digital CMOS,” in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 2009,pp. 408–409.
[10] J. Craninckx, M. Liu, D. Hauspie, V. Giannini, T. Kim, J. Lee, M. Libois, B. Debaillie, C. Soens, M. Ingels, A. Baschirotto, J. Van Driessche, L. V. der Perre, and P. Vanbekbergen, “A fully reconfigurable software-defined radio transceiver in 0.13 μm CMOS,” in Proc.IEEE Int. Solid-State Circuits Conf., Feb. 2007, pp. 346–347.
[11] M. Ingels, C. Soens, J. Craninckx, V. Giannini, T. Kim, B. Debaillie, M. Libois, M. Goffioul, and J. Van Driessche, “A CMOS 100 MHz to 6 GHz software defined radio analog front-end with integrated pre-power amplifier,” in Proc. European Solid-State Circuits Conf., Sept. 2007, pp. 436–439.
[12] R. Svitek and S. Raman, “DC offsets in direct-conversion receivers: Characterization and implications,” IEEE Microwave Mag., vol.6, no. 3, pp. 76–86, Sept. 2005.
[13] J. Park, C. Lee, B. Kim, and J. Laskar, “Design and analysis of low flicker-noise CMOS mixers for direct-conversion receivers,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 12, pp. 4372–4380, Dec.2006.
[14] A. M. Ismail and H. Olsson, “A wideband RF front-end for multiband multistandard high-linearity low-IF wireless receivers,” IEEE J. Solid-State Circuits, vol. 37, no. 9, pp. 1162–1168, Sept.2002.
[15] R. Vaughan, N. Scott, and D. White, “The theory of bandpass sampling,” IEEE Trans. Signal Processing, vol. 39, no. 9, pp. 1973–1984, Sept. 1991.
[16] D. M. Akos, M. Stockmaster, J. B. Tsui, and J. Caschera, “Direct bandpass sampling of multiple distinct RF signals,” IEEE Trans. Commun., vol. 47, no. 7, pp. 983–988, July 1999.
[17] R.B. Staszewski, K. Muhammad, D. Leipold, C.-M. Hung, Y.-C. Ho, J.L. Wallberg, C. Fernando, K. Maggio, R. Staszewski, T. Jung, J. Koh, S. John, I.Y. Deng, V. Sarda, O. Moreira-Tamayo, V. Mayega, R. Katz, O. Friedman, O.E. Eliezer, E. de-Obaldia, and P.T. Balsara, “All-digital TX frequency synthesizer and discrete-time receiver for bluetooth radio in 130-nm CMOS,” IEEE J. Solid-State Circuits,vol. 39, no. 12, pp. 2278–2291, Dec. 2004.
[18] K. Muhammad, Y.-C. Ho, T. Mayhugh, C.M. Hung, T. Jung, I. Elahi, C. Lin, I.Y. Deng, C. Fernando, J.L. Wallberg, S. Vemulapalli, S. Larson, T. Murphy, D. Leipold, P. Cruise, J. Jaehnig, M.C. Lee, R.B. Staszewski, R. Staszewski, and K. Maggio, “A discrete time quadband GSM/GPRS receiver in a 90 nm digital CMOS process,” in Proc. Custom IC Conf., San Jose, CA, Sept. 2005, pp. 804–807.
[19] F. H. Raab, P. Asbeck, S. Cripps, P.B. Kenington, Z.B. Popovic, N. Pothecary, J.F. Sevic, and N.O. Sokal, “RF and microwave power amplifier and transmitter technologies—Part 3,” High Freq. Electron., vol. 2, no. 5, pp. 34–46, Sept. 2003.
[20] J. Kim, S. Kim, J. Shin, Y. Kim, J. Min, K. Kim, and H. Shin, “A CMOS direct conversion transmitter with integrated in-band harmonic suppression for IEEE 802.22 cognitive radio applications,” in Proc. Custom IC Conf., San Jose, CA, Sept. 2008, pp. 603–606.
[21] A. Loke and F. Ali, “Direct conversion radio for digital mobile phones—Design issues, status, and trends,” IEEE Trans. Microwave Theory Tech., vol. 50, no. 11, pp. 2422–2435, Nov. 2002.
[22] B. Razavi, “Design considerations for direct-conversion receivers,” IEEE Trans. Circuits Syst. II, vol. 44, no. 6, pp. 428–435, June 1997.
[23] S. C. Cripps, RF Power Amplifiers for Wireless Communications. Norwood, MA: Artech House, 1999.
[24] P. B. Kennington, High Linearity RF Amplifier Design. Norwood, MA: Artech House, 2000.
[25] R. Kahn, “Single sideband transmission by envelope elimination and restoration,” Proc. IRE, vol. 40, no. 7, pp. 803–806, July 1952.
[26] M. Iwamoto, A. Jayaraman, G. Hanington, P. F. Chen, A. Bellora, W. Thornton, L. E. Larson, and P. M. Asbeck, “Bandpass delta-sigma class-S amplifier,” Electron. Lett., vol. 36, no. 12, pp. 1010–1012, June 2000.
[27] M. Nielsen and T. Larsen, “A 2-GHz GaAs HBT RF pulsewidth modulator,” IEEE Trans. Microwave Theory Tech., vol. 56, no. 2, pp. 300–304, Feb. 2008.
[28] M. Helaoui, S. Hatami, R. Negra, and F. Ghannouchi, “A novel architecture of delta-sigma modulator enabling all-digital multiband multistandard RF transmitters design,” IEEE Trans. Circuits Syst. II: Express Briefs, vol. 55, no. 11, pp. 1129–1133, Nov. 2008.
[29] A. Jayaraman, P. F. Chen, G. Hanington, L. Larson, and P. Asbeck, “Linear highefficiency microwave power amplifiers using bandpass delta-sigma modulators,” IEEE Microwave Guided Wave Lett., vol. 8, no. 3, pp. 121–123, Mar. 1998.
[30] I. Kim, Y. Woo, J. Kim, J. Moon, J. Kim, and B. Kim, “High-efficiency hybrid EER transmitter using optimized power amplifier,” IEEE Trans. Microwave Theory Tech., vol. 56, no. 11, pp. 2582–2593, Nov. 2008.
[31] F. Wang, A. Hueiching, D. F. Kimball, L. E. Larson, and P. M. Asbeck, “Design of wide-bandwidth envelope-tracking power amplifiers for OFDM applications,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 4, pp. 1244–1255, Apr. 2005.
[32] M. Iwamoto, A. Williams, P. Chen, A. G. Metzger, L. E. Larson, and P. M. Asbeck, “An extended Doherty amplifier with high efficiency over a wide power range,” IEEE Trans. Microwave Theory Tech., vol. 49, no. 12, pp. 2472–2479, Dec. 2001.
[33] Y. Yang, J. Cha, B. Shin, and B. Kim, “A fully matched N-way Doherty amplifier with optimized linearity,” IEEE Trans. Microwave Theory Tech., vol. 51, no. 3, pp. 986–993, Mar. 2003.
[34] S. Moloudi, K. Takinami, M. Youssef, M. Mikhemar, and A. Abidi, “An outphasing power amplifier for a software-defined radio transmitter,” in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 2008, pp. 568–569.
[35] “Debugging embedded mixed-signal designs using mixed signal oscilloscopes,” Agilent Application Note no. 5989-3702EN, Agilent Technol., Inc., Santa Clara, CA, Mar. 2008. [Online]. Available:http://www.home.agilent.com/agilent/home.jspx
[36] Rohde & Schwarz, Munich, “Software defined radios – overview and hardware (1),” The Rohde & Schwarz News Magazine, no. 182, pp. 58-61, 2004. [Online]. Available: http://www2.rohde-schwarz. com/
[37] Tektronix, Beaverton, OR, “Introduction to mixed signal test solutions,” Tektronix Application Note no. 3GW-20213-0, Sept. 15, 2006. [Online]. Available: http://www.tek.com/
[38] Waveform Measurement and Analysis Technical Committee of the IEEE Instrumentation and Measurement Society, 1241-2000-IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters, IEEE Standard 1241-2000, June 13, 2001.
[39] P. Cruz, N. B. Carvalho, K. A. Remley, and K. Gard, “Mixed analog-digital instrumentation for software defined radio characterization,” in IEEE MTT-S Int. Microwave Symp. Dig., Atlanta, GA, June 2008, pp. 253–256.
[40] Agilent Technol., Inc., “Software defined radio measurement solutions,” Agilent Technol., Inc., Santa Clara, CA, July 13, 2007. “Software defined radio measurement solutions,” Agilent Application Note no. 5989-6931EN, July 13, 2007.
[41] Tektronix, “Testing modern radios,” Tektronix Application Note no. 37W-21488-1, Beaverton, OR, Nov. 12, 2007.
[42] Tektronix, “Software defined radio testing using real-time signal analysis,” Tektronix Application Note no. 37W-19680-0, May 12, 2006.
[43] D. F. Williams, T. S. Clement, P. D. Hale, and A. Dienstfrey, “Terminology for high-speed sampling-oscilloscope calibration,” in ARFTG Conf. Dig., Dec. 2006, pp. 9–14.
[44] K. A. Remley, “Multisine excitation for ACPR measurements,” in IEEE MTT-S Int. Microwave Symp. Dig., June 2003, vol. 3, pp. 2141–2144.
[45] J. C. Pedro and N. B. Carvalho, “Designing multisine excitations for nonlinear model testing,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 1, pp. 45–54, Jan. 2005.
[46] K. M. Gharaibeh, K. G. Gard, and M. B. Steer, “In-band distortion of multisines,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 8, pp. 3227–3236, Aug. 2006.
[47] R. Santos, N. B. Carvalho, and K. G. Gard, “Characterization of SNDR degradation in nonlinear wireless transmitters,” Int. J. RF Microwave Comput.- Aided Eng., vol. 19, no. 4, pp. 470–480, July 2009.
[48] P. Cruz, N. B. Carvalho, and K. A. Remley, “Evaluation of nonlinear distortion in ADCs using multisines,” in IEEE MTT-S Int. Microwave Symp. Dig., Atlanta, GA, June 2008, pp. 1433–1436.
[49] Local and Metropolitan Networks—Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems, IEEE 802.16e-2005, 2005.
[50] J. S. Kenney and J.-H. Chen, “Power amplifier linearization and efficiency improvement techniques for commercial and military applications,” in Proc. IEEE Int. Conf. Microwaves, Radar and Wireless Communications, May 2006, pp. 3–8.
[51] Y. E. Chen, L. Yang, and W. Yeh, “An integrated wideband power amplifier for cognitive radio,” IEEE Trans. Microwave Theory Tech., vol. 55, no. 10, pp. 2053– 2058, Oct. 2007.
作者:Pedro Cruz, Nuno Borges Carvalho, Kate A. Remley