国产91免费_国产精品电影一区_日本s色大片在线观看_中文在线免费看视频

您現在的位置: 通信界 >> 測試儀表 >> 技術正文  
 
基于ARM與低成本MEMS器件的AHRS設計[圖]
[ 通信界 / 佚名 / www.6611o.com / 2016/4/25 22:52:52 ]
 

摘要: 自平衡機器人、多旋翼無人飛行器的控制需要高精度的姿態運動信息作為反饋輸入,要求測量模塊具有響應快、體積小和功耗低的特點。采用低成本的MEMS器件與STM32單片機構建了航向姿態參考系統硬件平臺。針對傳感器的特點,設計了基于擴展卡爾曼濾波算法的雙矢量校正方法,并給出了陀螺儀的溫度補償、磁傳感器的校正方法。

引言

航向姿態參考系統(Attitude and Heading Reference System,AHRS)能夠提供航向、橫滾和側翻等姿態信息,機械陀螺儀及光纖陀螺儀等高精度慣性導航器件價格昂貴,難以得到推廣。目前MEMS傳感器在消費類電子產品中得到廣泛應用,但是MEMS角速率陀螺儀存在嚴重的零點漂移和隨機誤差,在捷聯慣性導航解算中會產生積分誤差,難以達到應用的精度。加速度計和磁場計能分別測量出重力加速度和地磁場這兩個不相關的三維矢量,可以作為平臺姿態的觀測矢量來校準陀螺儀。擴展卡爾曼濾波可以結合這幾種傳感器的特點,以陀螺儀測量得到的角速率作預測更新,以重力加速度和磁場觀測更新,得到更高精度的姿態角信息。

1 硬件結構

MEMS器件的AHRS硬件基本組成為三軸角速率陀螺儀、三軸加速度計、三軸磁阻傳感器和STM32系列微處理器STM32F103U8T6。航向姿態參考系統的硬件結構如圖1所示。

IMU采用整合了16位的三軸陀螺儀和三軸加速度計的MPU6000,與多組件方案相比,有效避免了組合陀螺儀與加速器時之軸間安裝誤差的問題,節省了安裝空間。同時,內部自帶了16位A/D轉換器,簡化了電路設計。MPU6000的角速率量程為±250 °/s、±500 °/s、±1000 °/s與±2000 °/s。加速度測量范圍為±2g、±4g、±8g與±16G。內部自帶16位的數字溫度傳感器,方便對傳感器進行溫度補償。數據可通過最高可達400 kHz的I2C總線或最高可達20 MHz的SPI接口傳輸,采樣更新速率達到8 kHz,可保證系統測量的實時性。

圖1 航向姿態參考系統的硬件結構

霍尼韋爾HMC5883為三軸12位I2C總線數字量輸出磁阻傳感器,測量范圍為±1~±8 Gs,數據更新速率為80 Hz。內置OFFSET/SET/RESET電路,不會出現磁飽和與累加誤差現象,支持自動校準程序,簡化使用步驟,可以滿足地磁場的測量要求。選用基于CortexM3內核的STM32系列ARM處理器STM32F103U8T6,主頻達72 MHz,1.25 DMIPS/MHz;具有硬件單周期乘法器,保證姿態更新的實時性;具有豐富外設接口,可采用I2C總線接口從傳感器中讀取數據,通過串口與上位機進行通信。

2 四維擴展卡爾曼濾波算法

擴展卡爾曼濾波算法(Extended Kalman Filter, EKF)是一套由計算機實現的實時遞推算法,所處理的對象是隨機信號,利用系統噪聲和觀測噪聲的統計特性,以系統的觀測量作為濾波器的輸入,以所要求的估計值(系統的狀態變量)作為濾波器的輸出,濾波器的輸入和輸出由時間更新和觀測更新算法聯系在一起,根據系統的狀態方程和觀測方程估算出所需要處理的信號。AHRS擴展卡爾曼濾波算法的狀態變量采用四維四元數,與采用歐拉角相比,避免了采用歐拉角計算時涉及的大量三角函數運算,保證了更新速率和實時性,同時不存在采用歐拉角運算出現的奇異性。歐拉角與四元數的轉換關系如式(1)~(3)所示。

四元數微分方程如式(4)所示,四元數姿態矩陣微分

方程只要解4個微分方程,比方向余弦姿態矩陣微分方程減少了大量的運算,便于微處理器的編程實現。

2.1 時間更新

系統的狀態方程如式(5)所示。

其中狀態變量為四元數X=[q0,q1,q2,q3]T,Wk-1為四維過程噪聲。矩陣A可以根據陀螺儀測得的三軸角速率[ωX,ωY,ωZ]T得到,如式(6)所示。其中Δt為兩次時間預測更新所流逝的時間。

狀態變量的時間更新如式(7)所示。

協方差矩陣P預測如式(8)所示,式中Q為四維過程激勵噪聲協方差。

2.2 觀測更新

AHRS的觀測更新是通過本體坐標系上的重力加速度和地磁場的參考矢量旋轉至導航坐標系上,再與加速度和磁場傳感器比較,得到觀測變量的殘余。由本體系轉換至導航系的轉移矩陣由四元數可以表示為式(9)。

三維參考向量v轉移至導航系中可由觀測方程式(10)表示。

當重力加速度觀測更新時參考向量v等于重力加速度參考矢量(可設置為當平臺靜止水平放置時,加速度計測量得到的三維矢量為:

當磁場觀測更新時v等于磁場參考矢量(可設置為當平臺靜止水平放置且航向指向正北時,磁阻計測量得到的三維矢量為:

H是h對X求偏導的雅可比矩陣,如式(11)所示。

卡爾曼增益矩陣Kk如式(12)所示,式中R陣為三維觀測噪聲協方差矩陣。

觀測更新:

當重力加速度觀測更新時zk為加速度,傳感器測量得到的三維矢量zk=[aXaYaZ]T,當磁場觀測更新時zk為磁阻傳感器,測量得到的三維矢量zk=[mXmYmZ]T。協方差更新:

3 程序結構

AHRS的軟件設計主要分為:

① 傳感器初始化,包括設置傳感器的更新速率、量程。

② 初始化卡爾曼濾波的相關矩陣,根據傳感器的特點設置過程激勵噪聲協方差矩陣Q,設為對角元素為0.1的四維對角方陣。

③ 若成功讀取陀螺儀數據,進行卡爾曼濾波的時間更新。

④ 采集加速度傳感器和磁阻傳感器的數據,若讀取成功則進行觀測更新。加速度觀測更新與磁場觀測更新算法差別在于觀測方差的R,可根據兩種傳感器的置信度設置相應的值,航向姿態參考系的程序流程如圖2所示。

圖2 航向姿態參考系的程序流程

4 傳感器校準

4.1 陀螺儀溫度補償

低成本MEMS陀螺儀存在著較大的零點偏移,一般可以達到1~3 °/s?梢酝ㄟ^增加擴展卡爾曼濾波的狀態變量的維數,即增加三維陀螺零偏做數據融合得以解決。優點是可以動態地估計陀螺的零偏,有較強的適應能力,缺點是卡爾曼濾波算法的計算量以維數的三次方增加,因此實時性會有所降低,在要求姿態更新速率高而單片機計算性能有限的情況下,可以采用溫度補償的方法解決。陀螺儀的零點偏移與傳感器溫度和溫度梯度密切相關。MPU6000陀螺儀溫度變化緩慢的情況下,可以認為其溫度零點漂移對應此時傳感器的溫度。

可設溫漂曲線為三次多項式BX=At3+Bt2+Ct1+D,通過最小二乘法擬合之后可得到各項系數。經過溫度補償后的陀螺儀曲線如圖3所示。

圖3 靜止時減去溫漂后的角速率曲線

4.2 硬磁及非正交度校正

地磁場正常情況下測量到的三維數據在空間上的包絡應該是一個標準的圓球。但是磁場計測量出來的數據由于受到外界磁場的影響,加上磁阻傳感器各軸的標度因子和非正交度,導致傳感器采集到的數據在三維空間內分布的包絡面為球心偏移原點的橢球面,磁場裸數據三維分布如圖4所示。

圖4 磁場裸數據三維分布

橢球面約束方程如式(15)所示。

其中m為傳感器測得的三維磁場強度,c為球心偏移的三維向量,U為標度因子及非正交度校矩陣。磁場強度沒有實際意義,關心的是傳感器測量的地磁三維矢量方向,所以設磁場向量模為1。通過最小二乘法可以計算出U和c。磁場數據校正前后對比如圖5所示,左右兩圖為校正前后數據在XY平面上的投影。

圖5 磁場數據校正前后對比

5 實驗結果

AHRS放置在與1024線光柵編碼器固連的轉動平臺上,測試俯仰姿態角的測量精度及跟蹤性能,AHRS與編碼器測量曲線對比如圖6所示。

圖6 AHRS與編碼器測量曲線對比

圖中實線為AHRS的測量值,點劃線為編碼器的測量值。當測試平臺以幅度約±10°的幅度擺動時。AHRS與編碼器測量數據相比在時間上滯后最大不超過5 ms,峰峰值相差不超過03°。

結語

基于四元數擴展卡爾曼濾波算法的AHRS具有更新速率高、實時性好、價格低廉的特點,能夠廣泛應用于手機、平板電腦等消費類電子產品, 也能滿足一些機器人對姿態控制的測量需求。

參考文獻

[1] 付夢印,鄧志紅,閆莉萍.Kalman濾波理論及其在導航系統中的應用[M].2版.北京:科學出版社,2010:1718.

[2] 毛奔,林玉榮.慣性器件測試與建模[M].哈爾濱:哈爾濱工程大學出版社,2007:9394.

[3] 鄧正隆.慣性技術[M].哈爾濱:哈爾濱工業大學出版社, 2006:620.

[4] 李建利.新型硅MEMS陀螺儀和角加速度計結構設計及MIMU誤差標定補償[D].北京:北京航空航天大學,2008.

[5] C C Foster, G H Elkaim, UC Santa Cruz. Extension of a twoStep calibration methodology to include nonorthogonal sensor axes[J]. IEEE Transactionson Aerospace and ElectronicSystems, 2008,44(3):10701078.

[6] 張樹俠.捷聯式慣性導航系統[M].北京:國防工業出版社,1992:1517.

[7] 吳永亮,王田苗,梁建宏.微小型無人機三軸磁強計現場誤差校正方法[J].航空學報, 2011, 32(2):330336.

梁建宏(講師),主要研究領域為小型無人機。

 

作者:佚名 合作媒體:不詳 編輯:顧北

 

 

 
 熱點技術
普通技術 “5G”,真的來了!牛在哪里?
普通技術 5G,是偽命題嗎?
普通技術 云視頻會議關鍵技術淺析
普通技術 運營商語音能力開放集中管理方案分析
普通技術 5G網絡商用需要“無憂”心
普通技術 面向5G應運而生的邊緣計算
普通技術 簡析5G時代四大關鍵趨勢
普通技術 國家網信辦就《數據安全管理辦法》公開征求意見
普通技術 《車聯網(智能網聯汽車)直連通信使用5905-5925MHz頻段管理規定(
普通技術 中興通訊混合云解決方案,滿足5G多元業務需求
普通技術 大規模MIMO將帶來更多無線信道,但也使無線信道易受攻擊
普通技術 蜂窩車聯網的標準及關鍵技術及網絡架構的研究
普通技術 4G與5G融合組網及互操作技術研究
普通技術 5G中CU-DU架構、設備實現及應用探討
普通技術 無源光網絡承載5G前傳信號可行性的研究概述
普通技術 面向5G中傳和回傳網絡承載解決方案
普通技術 數據中心布線系統可靠性探討
普通技術 家庭互聯網終端價值研究
普通技術 鎏信科技CEO劉舟:從連接層構建IoT云生態,聚焦CMP是關鍵
普通技術 SCEF引入需求分析及部署應用
  版權與免責聲明: ① 凡本網注明“合作媒體:通信界”的所有作品,版權均屬于通信界,未經本網授權不得轉載、摘編或利用其它方式使用。已經本網授權使用作品的,應在授權范圍內使用,并注明“來源:通信界”。違反上述聲明者,本網將追究其相關法律責任。 ② 凡本網注明“合作媒體:XXX(非通信界)”的作品,均轉載自其它媒體,轉載目的在于傳遞更多信息,并不代表本網贊同其觀點和對其真實性負責。 ③ 如因作品內容、版權和其它問題需要同本網聯系的,請在一月內進行。
通信視界
華為余承東:Mate30總體銷量將會超過兩千萬部
趙隨意:媒體融合需積極求變
普通對話 苗圩:建設新一代信息基礎設施 加快制造業數字
普通對話 華為余承東:Mate30總體銷量將會超過兩千萬部
普通對話 趙隨意:媒體融合需積極求變
普通對話 韋樂平:5G給光纖、光模塊、WDM光器件帶來新機
普通對話 安筱鵬:工業互聯網——通向知識分工2.0之路
普通對話 庫克:蘋果不是壟斷者
普通對話 華為何剛:挑戰越大,成就越大
普通對話 華為董事長梁華:盡管遇到外部壓力,5G在商業
普通對話 網易董事局主席丁磊:中國正在引領全球消費趨
普通對話 李彥宏:無人乘用車時代即將到來 智能交通前景
普通對話 中國聯通研究院院長張云勇:雙輪驅動下,工業
普通對話 “段子手”楊元慶:人工智能金句頻出,他能否
普通對話 高通任命克里斯蒂安諾·阿蒙為公司總裁
普通對話 保利威視謝曉昉:深耕視頻技術 助力在線教育
普通對話 九州云副總裁李開:幫助客戶構建自己的云平臺
通信前瞻
楊元慶:中國制造高質量發展的未來是智能制造
對話亞信科技CTO歐陽曄博士:甘為橋梁,攜"電
普通對話 楊元慶:中國制造高質量發展的未來是智能制造
普通對話 對話亞信科技CTO歐陽曄博士:甘為橋梁,攜"電
普通對話 對話倪光南:“中國芯”突圍要發揮綜合優勢
普通對話 黃宇紅:5G給運營商帶來新價值
普通對話 雷軍:小米所有OLED屏幕手機均已支持息屏顯示
普通對話 馬云:我挑戰失敗心服口服,他們才是雙11背后
普通對話 2018年大數據產業發展試點示范項目名單出爐 2
普通對話 陳志剛:提速又降費,中國移動的兩面精彩
普通對話 專訪華為終端何剛:第三代nova已成為爭奪全球
普通對話 中國普天陶雄強:物聯網等新經濟是最大機遇
普通對話 人人車李。航衲臧l力金融 拓展汽車后市場
普通對話 華為萬飚:三代出貴族,PC產品已走在正確道路
普通對話 共享退潮單車入冬 智享單車卻走向盈利
普通對話 Achronix發布新品單元塊 推動eFPGA升級
普通對話 金柚網COO邱燕:天吳系統2.0真正形成了社保管