国产91免费_国产精品电影一区_日本s色大片在线观看_中文在线免费看视频

您現在的位置: 通信界 >> 測試儀表 >> 技術正文  
 
基于PID控制的導彈分通道仿真[圖]
[ 通信界 / 電子設計工程 / www.6611o.com / 2011/8/17 18:53:04 ]
 

1 引言
    現代高性能作戰飛機普遍采用推力矢量技術,各種高空高速高機動再人彈頭的威脅愈顯突出,這對傳統氣動舵控制的導彈系統提出新的要求。現代導彈要求能夠選擇攻擊目標,具有一定的抗干擾能力,實現全天候作戰,這使得導彈向高精度、高智能、輕小型化發展;同時,導彈制導控制精度的提高已從制導轉向控制。導彈目標范圍不斷擴大,由反飛機擴大至反巡航導彈、反彈道式導彈等反導任務。高空、高速、大機動已成為當今導彈目標的重要特征,目標的高速大機動特征導致彈一目相對運動加劇,對導彈末端過載提出很高要求;另一方面,目標的高空特征導致導彈系統效率大大降低,可用過載隨高度的升高而大幅下降。為了解決這些矛盾,這里采用PID控制方法控制導彈的俯仰、偏航、滾動3個通道。

2 模型的建立

研究導彈制導問題,必須以一定的數學模型為基礎。因此,在選擇適當的坐標系后,分析推導出導彈的分通道的理想控制運動學模型,并建立舵機模型。

2.1 分通道的理想控制動力學方程

導彈由于存在滾動角,會造成耦合現象,從而增加控制困難,降低控制精度,故應盡量減少耦合,分通道控制。由于導彈的對稱性,當滾動角為零或較小時,忽略俯仰與偏航的耦合,即單輸入單輸出系統。因此可用經典控制理論分通道來研究、分析和設計導彈的控制系統。

縱向運動為導彈縱向動力學方程為:

基于PID控制的導彈分通道仿真

式中,基于PID控制的導彈分通道仿真為切向力,基于PID控制的導彈分通道仿真為法向力,基于PID控制的導彈分通道仿真為俯仰力矩,m為導彈質量,V為導彈的飛行速度矢量,α為攻角,θ為彈道的傾角,δz為俯仰舵偏角,ωz為導彈繞彈體坐標系oz1軸的角速度,X,Y為彈上的總空氣動力沿速度坐標系分解的阻力、升力,Jz為導彈繞彈體坐標系oz1軸的轉動慣量,Mz為俯仰力矩。

而側向運動為航向和橫向相互交聯耦合,則導彈側向動力學方程為:

基于PID控制的導彈分通道仿真

式中,-mVcosθ(dψv/dt)為導彈質心加速度的水平分量,“-”表示向心力為正,所對應的ψv為負,反之亦然。它是由角度正負號定義所決定的,dωx/dt、dωy/dt為導彈轉動角加速度矢量在彈體坐標系軸上的分量,Jx、Jy、Jz分別為導彈繞彈體坐標系ox1、oy1、oz1軸的轉動慣量,Mx、My分別為滾轉力矩和偏航力矩,Y、Z分別為彈上的總空氣動力沿速度坐標系分解的升力、側向力,ωx、ωy、ωz分別為導彈繞彈體坐標系ox1、oy1、oz1軸的角速度。

2.2 舵機模型

2.2.1 電動機模型建立

電動機控制原理圖如圖1所示。

基于PID控制的導彈分通道仿真

設減速比i,總轉動慣量J,力矩M,輸入電壓u,電流I,電感L,電阻R,鼓輪的角速度與轉角分別為ω和δk,舵偏角δ,電動舵機的力矩特性近似為A,機械特性近似為-B,Mj是鉸鏈力矩,基于PID控制的導彈分通道仿真是單位舵偏角產生的鉸鏈力矩,TM=L/R為電動機的電氣時間常數,則舵機在有載情況下的傳遞函數為:

基于PID控制的導彈分通道仿真

2.2.2 舵回路

舵面的鉸鏈力矩對舵機的影響很大,飛行控制系統采用閉環回路設計,消除其影響。舵回路一般采用位置和速度兩種反饋補償方式消除鉸鏈力矩對其的影響。

位置反饋的傳遞函數為:

基于PID控制的導彈分通道仿真

基于PID控制的導彈分通道仿真。因此,引入較強反饋,電機輸出轉交正比于輸入電壓,與反饋量成正比,而與鉸鏈力矩的大小無關。

速度反饋的傳遞函數為:

基于PID控制的導彈分通道仿真

根據以上分析,引入較強速度反饋時,則電機輸出角速度正比于輸入電壓,而與飛行狀態即鉸鏈力矩的大小無關。

因此,舵機位置控制系統的系統結構如圖2所示。

基于PID控制的導彈分通道仿真

 

3 分通道PID控制

導彈飛行姿態是通過控制導彈的3個舵面(即升降舵、方向舵、滾動舵)的偏轉,改變舵面的空氣動力特性,形成圍繞導彈質心的旋轉矩,實現飛行姿態的改變。角位置控制分為3個通道,俯仰通道(控制俯仰角)、偏航通道(控制偏航角)、滾動通道(控制滾動角)。

3.1 舵機的PID控制

根據圖2所示的舵機位置控制系統結構框圖,其中電流環節采用電流計反饋,轉速反饋用速測發電機,位置反饋用光電編碼器。舵機采用三閉環控制設計,即電流環,轉速環和位置環。可用“臨界比例度法”初步確定PID參數。此方法適用于已知對象傳遞函數的場合,閉合的控制系統中將調節器置于純比例作用下。從大到小逐漸改變調節器的比例度,得到等幅振蕩的過渡過程。此時的比例度成為臨界比例度δk,相鄰兩個波峰間的時間間隔稱為臨界振蕩周期Tk,由此計算出各個參數,即Kp、Ti、Td的值。

3.2 縱向通道控制

傳統的控制方案是將舵機簡化為一個放大環節,系統僅存在角速度反饋,其縱向通道傳遞函數為:

基于PID控制的導彈分通道仿真

式中,KM為傳遞系數,TM為時間常數,ξM為相對阻尼系數,T1為氣動力常數。

在設計精確考慮舵機環節的縱向通道時,需加入PID校正環節,分析系統使其滿足設計要求,圖3為其控制系統結構框圖。

基于PID控制的導彈分通道仿真

3.3 橫向通道控制

當滾動通道的輸入指令為零時,即保持滾動角和角速度為零,則消除了俯仰通道和偏航通道的耦合作用,可分別控制3個通道。此時,對稱結構導彈的俯仰通道和偏航通道的控制基本相同。

3.4 滾動通道控制

將舵機環節引入滾動通道,與縱向通道及航向通道類似,引入PID校正環節,分析系統,其角速度傳遞函數為:

基于PID控制的導彈分通道仿真

式中,KMx為傳遞系數,TMx為傾斜時間常數。

4 仿真結果

為驗證控制方案的正確性和控制效果,則給定以下導彈參數:KM=0.171 7(1/s)、TM=0.085 0(s)、ξM=0.111 2、T1=6.521 7(s)、KMx=170.778 9、TMx=1.006 3(s)分別對舵機系統、縱向通道系統、橫向通道系統、滾動通道系統加入單位階躍信號進行數字仿真,并對傳統控制系統進行仿真,對比控制結果。圖4為舵機系統時域階躍響應曲線。由圖4仿真曲線看出,超調量9.5%,上升時間41.9 ms,調節時間(2%誤差帶)88.8 ms,穩態誤差為0。

基于PID控制的導彈分通道仿真

圖5為縱向通道時域階躍響應曲線,從圖5仿真曲線可看出,在精確考慮舵機環節情況下,PID校正環節縱向通道時域階躍響應曲線反應良好,超調量11.4%,上升時間170.6 ms調節時間(2%誤差帶)356.3 ms,穩態誤差為0。

基于PID控制的導彈分通道仿真

圖6為橫向通道時域階躍響應曲線。從圖6仿真曲線看出,在精確考慮舵機環節情況下,PID校正環節橫向通道時域階躍響應曲線反應良好,超調量11.4%,上升時間168.3 ms調節時間(2%誤差帶)347.1 ms,穩態誤差為0。

基于PID控制的導彈分通道仿真

圖7為滾轉通道時域階躍響應曲線。從圖7的仿真曲線可看出,在精確考慮舵機環節的情況下,PID校正環節滾轉通道的時域階躍響應曲線反應良好,超調量9.81%,上升時間為178.6 ms,調節時間(2%誤差帶)397.1 ms,穩態誤差為0。

基于PID控制的導彈分通道仿真

5 結論

本文利用臨界比例度法得到PID參數,利用MATLAB/Simulink進行時域仿真,從仿真結果看,該PID分通道控制方法可以提高傳統氣動舵導彈控制系統的準確性、快速性及穩定性。當然這只是給出與傳統控制方案相比較的結果,實際的參數還要在實物仿真中不斷調試,并對控制系統修正改進,以得到令人滿意的控制效果。仿真結果表明,各通道系統反映良好,能夠實現實時控制要求。

 

作者:電子設計工程 合作媒體:電子設計工程 編輯:顧北

 

 

 
 熱點技術
普通技術 “5G”,真的來了!牛在哪里?
普通技術 5G,是偽命題嗎?
普通技術 云視頻會議關鍵技術淺析
普通技術 運營商語音能力開放集中管理方案分析
普通技術 5G網絡商用需要“無憂”心
普通技術 面向5G應運而生的邊緣計算
普通技術 簡析5G時代四大關鍵趨勢
普通技術 國家網信辦就《數據安全管理辦法》公開征求意見
普通技術 《車聯網(智能網聯汽車)直連通信使用5905-5925MHz頻段管理規定(
普通技術 中興通訊混合云解決方案,滿足5G多元業務需求
普通技術 大規模MIMO將帶來更多無線信道,但也使無線信道易受攻擊
普通技術 蜂窩車聯網的標準及關鍵技術及網絡架構的研究
普通技術 4G與5G融合組網及互操作技術研究
普通技術 5G中CU-DU架構、設備實現及應用探討
普通技術 無源光網絡承載5G前傳信號可行性的研究概述
普通技術 面向5G中傳和回傳網絡承載解決方案
普通技術 數據中心布線系統可靠性探討
普通技術 家庭互聯網終端價值研究
普通技術 鎏信科技CEO劉舟:從連接層構建IoT云生態,聚焦CMP是關鍵
普通技術 SCEF引入需求分析及部署應用
  版權與免責聲明: ① 凡本網注明“合作媒體:通信界”的所有作品,版權均屬于通信界,未經本網授權不得轉載、摘編或利用其它方式使用。已經本網授權使用作品的,應在授權范圍內使用,并注明“來源:通信界”。違反上述聲明者,本網將追究其相關法律責任。 ② 凡本網注明“合作媒體:XXX(非通信界)”的作品,均轉載自其它媒體,轉載目的在于傳遞更多信息,并不代表本網贊同其觀點和對其真實性負責。 ③ 如因作品內容、版權和其它問題需要同本網聯系的,請在一月內進行。
通信視界
華為余承東:Mate30總體銷量將會超過兩千萬部
趙隨意:媒體融合需積極求變
普通對話 苗圩:建設新一代信息基礎設施 加快制造業數字
普通對話 華為余承東:Mate30總體銷量將會超過兩千萬部
普通對話 趙隨意:媒體融合需積極求變
普通對話 韋樂平:5G給光纖、光模塊、WDM光器件帶來新機
普通對話 安筱鵬:工業互聯網——通向知識分工2.0之路
普通對話 庫克:蘋果不是壟斷者
普通對話 華為何剛:挑戰越大,成就越大
普通對話 華為董事長梁華:盡管遇到外部壓力,5G在商業
普通對話 網易董事局主席丁磊:中國正在引領全球消費趨
普通對話 李彥宏:無人乘用車時代即將到來 智能交通前景
普通對話 中國聯通研究院院長張云勇:雙輪驅動下,工業
普通對話 “段子手”楊元慶:人工智能金句頻出,他能否
普通對話 高通任命克里斯蒂安諾·阿蒙為公司總裁
普通對話 保利威視謝曉昉:深耕視頻技術 助力在線教育
普通對話 九州云副總裁李開:幫助客戶構建自己的云平臺
通信前瞻
楊元慶:中國制造高質量發展的未來是智能制造
對話亞信科技CTO歐陽曄博士:甘為橋梁,攜"電
普通對話 楊元慶:中國制造高質量發展的未來是智能制造
普通對話 對話亞信科技CTO歐陽曄博士:甘為橋梁,攜"電
普通對話 對話倪光南:“中國芯”突圍要發揮綜合優勢
普通對話 黃宇紅:5G給運營商帶來新價值
普通對話 雷軍:小米所有OLED屏幕手機均已支持息屏顯示
普通對話 馬云:我挑戰失敗心服口服,他們才是雙11背后
普通對話 2018年大數據產業發展試點示范項目名單出爐 2
普通對話 陳志剛:提速又降費,中國移動的兩面精彩
普通對話 專訪華為終端何剛:第三代nova已成為爭奪全球
普通對話 中國普天陶雄強:物聯網等新經濟是最大機遇
普通對話 人人車李健:今年發力金融 拓展汽車后市場
普通對話 華為萬飚:三代出貴族,PC產品已走在正確道路
普通對話 共享退潮單車入冬 智享單車卻走向盈利
普通對話 Achronix發布新品單元塊 推動eFPGA升級
普通對話 金柚網COO邱燕:天吳系統2.0真正形成了社保管